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Abs[ract:

Ifie cascade correlation based neural network learning algorithm has drwwvt  a lot of attention

because of its enhanced learning capability. It overcomes significant drawbacks of error

backpropagalion  (EBP) in that (1) it is no longer constrained 10 a fixed architecture via a preallocation

of the number of hidden units, (2) it features seiec(ive  weigh( [raining as opposed to EBP’s global

weight  training. In addition, jiJom a hardware implementation perspective, nel works based on the

cascade correlation algorithm require sign ijcantly  less complex synaptic weight circuitry than those

reqliired  by EBP.

We present a rnathernalical  analysis for a new scheme termed Cascade Error Projection (CEP)

and show tha( (he same is also applicable to Cascade Correlation. In CEP, it is shown that there

exis!s, al least,  a non zero set of weights which is calculaledfiom afine space and that convergence is

assured because the net work salisfies  the Liapunov  criteria, iti added hidden units domain rather than

in the time domain. The CEP technique is faster to execute because part of the weigh(s  are

dcterrnin  is[ical[y obtained, and the learning of weights fiorn the inputs  to each added hidden unit is

perjorrned  as a single layer percepiron  learning with previously obtained weights frozen. In addition,

Ihc initial weights s[arl  oul with a zero value for e~’ery newly added unit, and a single hidden unit is

applied inslead of using a pool of candidate hidden units as for cascade correlation, lfiereby,
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hardware implementation is also simplified. Furthermore, this analysis allows us to predict the

suilobility  of other me~hods  (such as the conjugate gradient descent and Newton’s second order

me[hod)  which will be good candidates for the learning technique. The choice oflearning technique

depends on the constraints of the problems (e.g., speed, perfol mance, and hardware implementation);

one technique may be nwre suitable than some of the others. Moreover, for a discrete weight space,

t/~ct}leoretical  at~alysis presetits  thecaI~ability  of learning  w’ithlimitedw eight quantization. Finally, 5-

to 8-bit parity probletns  are investigated; the simulation results demonstrate that only three hidden

units are required to learn the 5-bit parity problem with no error and the 6-bit parity problem with only

one error, four hidden unitsare  required to learn 7-bit parity  problenl with no error and8-bit problem

wi[hotllyon~  error. Allsinlulations u)ere done u,ilh afixed]oo  epoch iteration sfor  each single-layer

pereeptron  (each single hidden unit) learning. In addition, with 3- to 4-bit weight resolution

requirement it is denwnstrated lhat this technique would be capable of learning reliably up to 8-bit

parity problems.

I-lntrocluction

There are many ill-defined problems in pattern recognition, classification, vision,

and speech recognition which need to be solved in real time [Duong  et al. 1992, 1994,

Boser et al. 1991]. These problems are too complex to be solved by a linear technique;

the most suitable approach would be a non-linear technique, such as a neural network.

An overview of general learning theory in neural network has been presented by

Amari(1990), and a neural network survey has been summarized by Hecht-

Niclsen(l 989). Currently, there are seveml  neurornophic  learning paradigms reported in

literature [Cohen and Grossberg 1983, Rumelhart  and McClelland 1986, Kosko 1988,

Hinton et al. 1984, Albus 1971, Hopfield  1982, Widrow 1962, Fukushima  1982,



Rosenblatt  1958, Kohonen 1989, Jackson 1988, Falhman  and Lebiere 1990, Duong  et

al. 1995] and a majority of them are supervised learning techniques. Error

Backpropagation learning algorithm(EBP)[  Rumelhardt  and McClelland, 1986] is a very

popular supervised learning technique. One of the most attractive features of the neural

network is a massively parallel processing that offers tremendous speed only when

implemented in hardware. From the hardware point of view, there are a few learning

algorithms that are more practical than others [Tawel  1993]. Resource allocation [Platt

199 1], cascade correlation (CC) [Falhman  and Lebiere  1990], and cascade

backpropagation  (CBP) [Duong  e t  a l . 1995] are among these practical learning

algorithms. Generally, neural network approaches in hardware face two main obstacles:

(1) difficulty of the network convergence due to the learning algorithm itself and the

limited precision of the devices; (2) the very high cost of implementing hardwa~  to truly

mimic the synapse and neuron transfer functions dictated by the algorithm.

Furthermore, the convergence and the impleme]ltable  hardware have a mutual

correlation to each other; for example, the convergence of the learning network depends

on the weight resolution available in synapse [Hollis et al. 1990, } loehfeld  and Fatdman

1992], and the cost of implementation of each bit in synapse grows, at least doubly, in

silicon area, power, and connectivity [Ebcrhardt  et al 1989, Duong et al. 1992].

Avoidance of these obstacles requires a learning alp,orithm that has a reliable learning

convergence (even with low weight quantization)  and is simple to implement in VLSI

hardware. There have been a few attempts to adapt such an algorithm to hardware. A

weight perturbation [Jabri and Flower 1992, Alspector et al. 1993, Cauwenberghs  1993]
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approach has been attempted. The technique of cascade correlation has shown

encouraging results in learning via simulation; this method was shown to be ~liable  and

fast in learning. However, it required at least a 12-bit weight resolution in synapse. A

probabilistic technique [Hochfeld  and Fahlman  1992] has been introduced to augment

the cascade correlation to reduce the weight resolution requirement, but it is difficult and

the hardware implementation is complex by their proposed scheme. Another approach

is the cascade backpropagation  (CBP)[Duong et al. 1995] that introduces a dynamical

step size adjustment to overcome the hardware problem. In CBP approach, it was

shown that the network is able to learn a relatively complex problem (6-bit parity) with

only 5-bit weight-resolution synapse. However, learning, which is conducted in two

layers by an iteration technique, is still slow and requites additional hardware when

implemented.

Therefore, a better learning algorithm is required with a concrete mathematical

foundation, as well as with a less cost] y electronic in]plementation.  In this paper, the

cascade error projection (CEP) learning algorithm is presented. It offers a simple

learning method using a one-layer perception approach and a deterministic calculation

for the other layer. Such a simple procedure offers a very fast, reliable, and hardware

implementable learning algorithm. In addition, the hardware implementation is not only

tolermt  of 3- and 4-bit weight resolution in synapse, but the learning technique which is

robustly implementable in VLSI hardware is itself inherently simple. Furthermore, a

detailed mathematical analysis of CEP is developed to guarantee the learning capability.

To validate the new learning theory of CEP, simulations for 5- to 8-bit parity problems
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are investigated with a variation in starting from a limited weight quantizations  (3- to 6-

bit weight rwolution)  and weight quantization  of a floating point machine (32-bit for

float and 64-bit for double precision).

In CC, the combination of supervised learning and cascading architecture shows

that it is potentially better for implementation in hardware than EBP in terms of its

learning capability [Hochfeld  and Fahlman  1992]. CBP is introduced to overcome the

difficulty of E13P [Duong  et al. 1995], with its gradient-descent technique of learning

and independently training each layer. It allows one to dynamically change the stepsize

of the synapse weight quantization  to compensate for the low weight resolution synapse

[Duong  et al. 1995]. The cascade error projection learning al~orithm is formed by

adapting the cascading architecture from CC, the independent learning layer with a

dynamical step size in CBP. In addition, a formal analysis is presented in the paper to

integrate the three features.

The network architecture is shown in Figure 1. Shaded squares and circles indicate frozen

weights; a square indicates calculated weights, and a circle indicates weights adapted by

iterative learning procedure. The analysis will be based only on the set of weights that is

connected to the new hidden unit (n+l),  n being the number of hidden units already added.

In this case, only the blank squares and circles will be require to be determined to improve

the energy level.

5



-—+-r--kPrevious hi den unit
-w

T“” ‘-T- -7-

Bias --l

—

T
1-Learned weight block LCalculated weights, frozen

Figure  1. The architecture of cascade error projection includes inputs,
hidden units, and output units. The shaded circles or squares indicate
the learned or calculated weight  set which arc eompulcd and frozen. A
circle indicates that learning is applied to obtain the weight set using
perccptron learning, and a square indicates that the weight set is
dctcrministically  calculated.

This paper is designed as follows: Section 2 is an analysis of cascading

architecture; a differential energy function between layer n and (n+ 1 ) is introduced. This

function contains two sets of variables which are (1) the set of weights between the

input (including previous expanded inputs) and the current hidden unit, namely W;h;  (2)

the set of weights between the current hidden unit and the output unit, namely who. The

two sets of variables for the diffemmtial  energy function are treated sequentially (not

simultaneously). The differential energy function is maximized with respect to W,+. to
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obrdin maxM.(AE).  However, the max~.(AE) is a function of ~ih. In this s~t@ we

show that there exists a solution set lljj which is obtained from affine space. This

solution set Wi~ guarantees that the network is reducing (or at least maintaining) the

present energy level when the new hidden unit is added. In this case, we can conclude

that the network converges in the Liapunov’s sense. From this evidence, one can

conclude that the solution which is obtained in non-linear space by Iearning techniques

(grddient  descent, conjugate gradient, correlation, or Newton’s second order) may be

the better one. This analysis ensures the convergence of learning in a non-linear space.

In section 3, we present the convergence analysis as a function of synaptic resolution. It

can be visualized that the learning trajecto~  is fairly smooth for high resolution synaptic

weights, but is courser as the resolution is decreased, causing bigger jumps in the

learning trajectory. Our analysis bears out that the necessary condition for the network

to converge with limited weight resolution is the requirement of additional hidden units

(compared with the number of hidden units in the floating point machine weight

resolution). In section 4, the cascade error projection learning algorithm is proposed.

This algorithm has two objectives: (a) consistency with the theoretical analysis and (b)

easy implementation in silicon. Section 5 is used to validate the theory through the

simulations. The problems that are used to validate the CXP are 5- to 8-bit parity

problems in a floating point machine weight resolution, and limited weight nxolution  is

studied. Discussions and suggestions are also included. Section 6 provides the

conclusion of our analysis along with future research directions.



11. Mathematical Analvsis in a Continuous Weitzht Sr)ace

Assume that the network contains n hidden units (see Fig. 2) and the learning

cannot be improved any further in energy level. At this point, the new hidden unit (n+l)

is added to the network.

a) Theorv of Cascade Ilrror Projection

Let E be an input space and Ec:[–~ 1]~+’, Y be an output space and ~c[–~1]”,  and Q

be a hidden output space and Q c[–~ I]q. Let us define

f,(9) :[-LllN+qflN+q --[-u]

j-. :[–lJJ~+q+lfl~+9+l  ,  y /

N is the dimension of the input space, q is the dimension of the expanded input space (q

is dynamically changed and is based on the learning requirement), and m is the dimension

of the output space. Finall y,~  is a sigmoidal  transfer function which is defined:

j-(x) = ‘x ‘e--x
e’ + C-”x

The used notations are defined as follows:

c ~ = I; – o: (n) denotes the error of output element o and training pattern p with target

t and actual output o(n). n indicates the output which has n hidden units in the network.

j’ ~ (n) = j’ ~ denotes the output transfer function de] ivative with respect to net. of the

output element o and the training pattern p.
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f: (n + 1) denotes the function of hidden unit n+l and training pattern p.

Xp denotes the input pattern p and IX I denotes the Euclidean distance of vector X.

Hidden ;nit u

Xp

[3Wih(n+])

Figure 2: Assume that there are (n+l) hidden units in the network and
the blank squares and circles arc the weight components which
dctcrminc  the weight values by learning or calculating.

Theorem  1: In cascading architecture, the maximum energy reduction between hidden

unit n and (n+)) with respect to w~O is

m
The energy function of the network can be defined as
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Let t; be a target output of unit o and input pattern p, and the output of unit o is given:

n+ 1

0:= f((x;)’lyo + f; (JM,O(0)x
j=]

with

::

1

x;

x:=”
.

.

x;

; X((n+ 1) .
7

1)

X f’ (dimension (N+l)xl)  denotes the original input vector of pattern p, and X; (n + 1)1

(dimension (n+l)xl) denotes an expanded input vector with (n+])  hidden units.

and let

[

x:
ip(n + 1) =

Xf(n + 1)

then

f ((ip(J)TWh(~)) = fi(j + D

f/(j + 1) denotes the output of hidden unit j+] with the input pattern p.

Let E(n) and E(n+ 1) be an energy level of the network with n, and n+] hidden units

respectively. The desire in learning is to reduce the energy from E(n) to E(n+]) as

much as possible (ignoring the overlearning phenomenon). The ideal case would be
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max{ll(n)  – E(n +- 1)) = ma AE

From Appendix A, we have

The sufficient condition for equation (1) to be maximum with respect to w~O is

Theorem 2: There exists a subspace  of weight space S c ‘X N’nof which Wi~(n+l)  E S hm

the new energy level E(n+ ]), such that E(n) -E(n+l)  >0.

m
From equation (2), we have

Randomly pick a set of weights, Wi~(n+l),  and validate all the training patterns. If

AE > (), then the reduction energy of the network is satisfied, If not, change the polarity

of wik (n +1), and since the transfer function is an odd function, AE will change in sign,

which should satisfy the reduction energy.
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always guarantees that there exists a weight subspace  of the learning weight space,



which is obtained from affine space. These cascading sequential subspaces  ensure that

the network converges in Liapunov’s  sense.

Let

r =

[

1 ‘“ ,,— ~f 0

m .=l
{t:

I
. . . . . . . . . . . . . . ...4

I . . . . . . . . . . . . . . . . . .
I . . . . . . . . . . . . . . . . . .

Then, r c [–l,l]P.

and

Fh(n + 1) =H
f;(n + 1)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

f:(n+l)

J
~1. . .=.++. . .} 9P

We can rewrite equation (2) in a matrix form as follows:

AE = mr7F~(n  + 1)

let
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~h(~+l)=r (3)

but

Fn(n + 1) = F(ll’lj(n + 1))

with

1=

‘(i’ (n))7’

. . . . . . . .

. . . . . . . .
1

(4)

(5)

M. . . . . . . .
(ip(n))T

From (3) and (4), let llj~ (n + 1) be a solution in affine space; then we have

1~., (n + 1) = FA-l (r)

Finally, the solution is

~.j  (~~ + I) = I +F~--’ (r)

l+ is the pseudo-inverse of 1 [Haykin].

The existence of llj~ (n + 1) depends on the non-zero column matrix 1+ F~-] (r), and the

rank of 1 is at least 1 because of the

(i=], n). At the same time, the error

non-linear combination of all previous dimensions

surface still exists (if it is zero, then the energy is

already zero). Therefore, the

shown, the existence in affine

linear space.

existence of ~.j (n + 1) is almost always guaranteed. As

space is demonstrated; however, we are interested in non-

From (3) and (5), apply the mean value theorem:
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r-~h’(n+l) = Ph (c){~-’(r)-~~.;(~+l))

with

F’~ (C)=

“f ‘h (C])o...o ]

[O...oh(d()j)j

Note that the dimension of F’h (C) is PxP.

Let

h other words, we have

r-r* = F’, (c){ F-’(r) -F-’ (r*)}

We also imply that

r–r”’= F’h (c){F,-’(r) -F’h (r”)
 2

(6)

Expanding equation (6), it is
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r – r *2

= F’, (C)F,-l (r) 2 – 2{ F’, (c)F,-’  (]”)}~ {F’, (c)Fh-”l (r”)}

+ F’~ (C) F~-l(r*) 2

(7)

Let

~ = lr12 - IF, (c)&-l (r)12 + 2{]7, (c)~’-l (r)}7{~  h (c)~h-’ (r”)}
+, (C)F,-l (r)12

and S20

The inequality (9) is proved in Appendix B

From (8) and (9), it is obtained:

–2rT* + r* 2s o

and we also have

r2+Fh*(n+l)2
rWh* (n + I)s !L

2

(8)

(9)

]n other words, it is

Fh*(n + 1) 2

r~~h” (n + 1) 2 –——
2

Finally, we have



Fh” (n + 1) 2 lrl’ + F,*(n+l)2
< r~F~* (n +- 1) <

2 2 “
(lo)

P’h*(n + 1) 2
We should note that ——— >0, because the rank of I is at least 1 (it is noted that

2

the output of hidden unit n is non-linear combination of the all previous output hidden

units and the original inputs and this output of hidden unit n ensures the rank of I at least 1

for itself). However, the inverse of sigmoidal  function is used to obtain the ~.~ (n + 1), so

it is possible to encounter the null space in aftine space. Therefore, the precise inequality

F,* (n+ 1)2
is >()

2

From (1 O), there exists at least one solution obtained by pseudo-inverse technique in

affine space. This solution also indicates the lower bound of reduction energy in the

hidden unit (n+l).  Therefore, in non-linear space it can be convinced there always exists

a solution space when the error surface is projected to the new hidden unit for learning

~F~(n+Q12
and the lower bound energy reduction is —-— — . To obtain the maximum

2

energy reduction, a straight approach is to obtain the most matching between F~ (n + 1)

and 1”, one can use gmdient  descent, maximum correlation, covariance,  Newton’s

second order method, or conjugate gradient techniques.

Finally, VE(n)  <0, with VE(n)  = E(n + 1) -- H(n).

In conclusion, we have shown that there exists a weight set JVi~ (n + 1) which is

obtained by the pseudo-inverse technique, and this wc.ight  set guarantees a reduction of
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or remaining the same of energy with a new added hidden unit (n+l ). From the network

viewpoint, the energy decreases or remains the same when the number of hidden units

increases; therefore the net work converges (in Liapunov’s sense).

b) Discussion:

Up to this point, it is possible to discuss the learning algorithms by S. Fahlman

(cascade correlation) and T. Duong  (cascade error projection). In this analysis, it is

clearly shown that the network converges when the error surface is projected to the

current hidden unit. To find the weight set between the input units (original inputs and

expanded inputs) and the current hidden unit depends on the objective which constraints

to select the learning technique (e.g., if it is desired to have a software-based learning,

then good candidates might be Newton’s second o] der, the maximum correlation or

covariance  technique, etc.) [Duong 1995]. As it is shown, the weight set can be

obtained directly from affine space by using the pseudo-inverse technique, which has

been thoroughly studied [Haykin 1991]. In addition, the mapping array technique also

offers a well-defined methodology [Kung 1988] to solve a singulw-value  decomposition

problem in the digital domain. However, in our approach, we are interested in a non-

linear solution space in which the solution weight set can be obtained directly from a

learning technique using analog/digital hardware. This learning approach will offer a

better solution from both the theoretical and implementable  point of view. First, the
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solution which is obtained in non-linear space has compactness of the network and

smoothness of the transformation because the data distribution is always in the non-

linear domain. Second, it is hard to solve a singular-valued decomposition problem in a

linear hardware network, even though the solution is deterministically  defined, but the

cost of the complicated hardware required by the network may exceed the available

resources.

As stated in the arguments above, we believe tile solution in non-linear space and

the analog/digital hardware approach are more favorable to having an efficient, compact

network and to providing simpler hardware implementation. Therefore, we have used

theorem 3 as strong evidence to focus our attention on a learning technique to obtain the

appropriate weight set for a particular use. The proposed learning algorithm CEP is

more feasible for hardware (low quantization, fast learning, and simple design) [Duong

1995], Also from the theory, it is feasible to use the. conjugate gradient technique, or

even better to use Newton’s second order method to get a good software learning

approach [Duong  1995]. However, the goal of our present analysis is to select the

learning algorithm that best satisfies the given constraints.

III. Mathematical Analvsis with Limited Weight Space

Theorem 4: In cascading architecture, the convergence of the network that is achieved

in a high weight quantization space can also be obtained in limited weight quantization

space (B is weight bit quantization  available) such that:
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Thenetwork  with the limited weight quantiz,ation space is almost always convergedin

mean square sense which is

0{ F,*(~ + I) 2}s 20{r7Fh*(~ + 1)}

@is a statistical mean operator.

P is a dynamical coefficient.

m

As proved above, the network converges in I.iapuncw’s  sense. In this section we also

want to show that the CEP learning approach has the capability to learn in the discrete

limited quantization  space. The requirement for this learning capability is using the

dynamical step size that can be obtained from the previous energy level. In Figure 2, with

a new hidden unit (n+]), the output o and pattern input p can be expressed:

O:(n + 1) = f(netj’ + Whof:(ll +- 1)) (11)

In equation (11), Who is calculated; hence, it has very little effect on the learning

capability, and it is ignored. However, The main focus of study in the learning capability

of the network is ~.~ . It can be expressed as follows:
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and

–W?p,size(n  + 1) <~ <gel) slz;(n+l)
2

with s/ep.~ize(~l+l)=~2-~

when fii~ is a weight vector in discrete limited weight space, and & is a noise vector that

may come from the round-off technique.

We have

(12)

If 5 is sufficiently small, equation (12) can be

Let v p = ~~ (n + 1) – ~~p (n + 1) be an error between the hidden output with infinite

weight resolution and the hidden output with limited weight resolution of hidden unit

(n+l).  Then,

Vp = f‘, (ip~.h)ipti

Frolm the previous proof, we obtain
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F,” OZ + 1) 2

< rTFh* (~ + 1)
2

111 i
t)’ f’j i’i5

. . . . . . . . .

Y = . = . . . . ..$..

. . . . . . . . .

‘up ~’~ip~

From (13), we can rewrite

F“*(H+I)+Y*  s2r7(Fh*(~+l)+y)

Expanded, we have

(13)

(14)

Let us introduce the srutistical  mean operator 0. In the process of obtaining the weight

set ~i~, the learning is repeatedly applied. This technique can be viewed as a statistical

mean process, then (14) becomes

~{ F~*(lt+ I) 2 +2{ Y’F,*(lz+  I)} +IY12) < 2G{FF,’(11+ I) +r~yl (15)



But, Y is independent to 1“ and F,*(I1 + 1).

In the round-off technique, Y can reconsidered as white noise and O(Y) = O. Then

inequality (15) becomes

(16)

The result of inequality (16) guarantees the learning capability of the network if

FA” (n + 1) is not zero, but it does not ensure the sanle achievement of energy level as

does the infinite weight resolution. As analysis, inequality (16) only guarantees that the

learning in limited weight quantization  can be done, given the assumption &<wih. The

remaining question is how small  8 can be compared to Wih, or how can we obtain

information about S through known information? We can observe that the smaller 5 is,

the closer the reduction between energies in limitii  weight quantization  and infinite

weight resolution is.

Iliscumion

The conversion between the continuous and the liinitecl  weight quantization  weight

space requires the scaling factor known as stepsize. With the fixed weight quantization

levels (2” levels, and B is bit quantization),  this stepsize is proportional to the energy
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reduction level (ignoring the non linear factor which is come from non linear transfer

function). The summarization can be described as follows:

@.h (n + 1) = stepsize(n+  1)

and ~ih(n + 1) K F~ (n+  1) (Roughly estimated and ignored the non linear factor)

Fh(n + 1) ~ AE(n)

FA(n + 1) M E(n)

then, stepsize(n+])  w E(n)

Therefore, stqsize(n+ ]) = cx E(n) with et constant

IV. Cascade Error Projection Learning Algorithm

The motivation to use the cascade error projection technique is supported by three

reasons:

1. It has fast learning by dividing the network into two independent networks:

a) Stochastic learning network (Master network)

b) Deterministic calculation network (Slave network).

2. It requires very low weight resolution which is easy to implement in hardware.

3. The learning algorithm theory guarantees the learning capability.

23
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The energy function is defined:

The weight updating between the inputs

hidden unit is calculated as follows:

Awj (n + 1) = –q
aE(n + 1)

aw;  (n + 1)

(including plevious  by expanded inputs) and the

(a)

and the weight updating between hidden unit h and output unit o is

The Cascade Error Projection Learninp  Akorithm Procedure

1. Start with the network which has input and oulput neurons. Wilh the given

input and output  patterns and hyperbolic transfer function, onc can dctcrminc

the set of weights Mwccn input and output by using pseudo-inverse or

pcrccptron  learning. The wcighl set Wio is thus obtained and fmzcn.

2. Add a ncw hidden unit with a zero weight set for each unit. III each loop

(contains an epoch) an input-outpul  pattern is picked up randomly in the

epoch (no rcpcatcd  pat lcrn until every pattern in the epoch is picked). Usc

(b)
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the ~rccptron  learning lcchniquc of equation (a) to train Wi~(n+l)  for 100

loops.

3. Stop the perception training. Calculate the weights Who(n+l ) bcl ween the

current hidden unit and the output units from equation (b).

Cross-validating the network. If the criteria is satisfied, then stop training,

and test the network. Olhcrwisc,  go to 2 until Ihe number of hidden units is

more than 20; then give up and quit!

V. Simulation

]n this section, we have selected complex non-linear problems for simulation which are

5- to 8-bit parity problems. In this simulation, there is only one output, therefore, we

can speed up the network by ignoring the derivative of the output transfer function (the

derivative of the output transfer function is always positive, therefore, the reduction of

energy always holds) which is:

s indicates the alternative sign (+/-) of the error surface to enhance the learning

capability. From equation (2), with CEP learning algorithm the magnitude of the error

&p is only a main object to minimize, but the sign of c ~ does not affect to the direction
0

of energy reduction. The equation (2) can rewrite as follows:
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Therefore, the sign s that is used in this simulation does not affeet the sign of reduction

energy.

a) ProblemLv

‘1’he problems that are solved in this paper are 5- to 8-bit parity problems for(1) with no

limited weight quantization  (The weight resolution is the same as the floating point

machine which is about 32-bit for floating point or 64-bit for double precision); and, (2)

the limited weight quantization  from 3-to 6-bits.

b) Parameters

As usual, the learning rate q is used and decrease linearly as follows:

~ nm =’Tlo,d-.ol*Tlo

In simulation, the parameter table below is used
——.

5-bit parity 6-bit parity 7-bit ~aritv 8-bit ~aritv
Floating-point ?lO=l.o q,=l.o q, =0.4 q,=o.4
machine Weight a =NJA a =NIA a =NIA a =NIA
3-bit Weights ‘rl, =l.o; qo=l.o; ‘—--q,= 1 .0; q.= 1.0;

a =.0024810 a =.016.597 a =.008766 a =.004101

4-bit Weights q,= 1 .0; ‘rl, =l.o; gr q,= 1 .0;
a =.0016467 a =.0108.58 a =.008218 a =.004101——. -.

5-bit Weights q.=l,o; ‘q, = 1 .0; q.=1.o; q,= 1 .0;
a =.0016467 a =.010858 a =.00816.3 a =.004217

6-bit Weights q,= 1 .0; q,= I .(); ‘—–-qo = 1 .0; ‘q, = 1.0;

— —  .
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a =.0016467 a =.010858 a =.00816.+ a =.004217

c) Conversion technique (round-off technique)

The updating weight Aw is converted into the available weight quantization which is

Aw*. The conversion can be summarized as follows:

,wepsize(n) = ai?(n – 1)

I
Awj, Wjh (n) Aw~jh (n)

slepsize(n)  * int (—— + 0.5) V ( — - ———— + int(—— + 0.5)) < 2Band AwjA(n)  >0
steps ize(n) stepsize(n) slepsize(n)

Awjh(n) ‘jh (n) Awjk(n)
Aw;,  (n)= sfepsize(n)  * int(—— – 0.5) if (—----— + inl(——– 0. S)) < –2’and Awjh(n)  <0

sfepsize(n) stepsize(n) steps ize(n)

10 Otherwise

d) Simulation results:

We are using 5-,6-,7-, and 8-bit parity problems. The input and output highs are 0.8, and

the lows are -0.8. The sigmoid  is the hyperbolic tangent function with gain 1/2

(f (x)= :;:: ). We use zero initial weights for each problem; therefore, we don’t need

to conduct a number of runs for each problem, Each hidden unit required 100 epoch
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learning iterations for the weight between the input and the current hidden unit only.
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Figure 3: The chart shows CEP learning capability for 5- to 8-bit
pa;it y problems. x axis represents limited weight quantization  (3-6 and
64-bit) and y axis shows the resulting number of hidden units (limited
to 20). As shown, the lager number of hidden units compensate for the
lower weight precision.
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Figure 4: The figure shows the learning capability of CEP for 5-bit
parity problcm.  x axis represents number of hidden units used (limited
to 20), and y axis is percentage error. As shown, even with 3-bil  limited
weight quantization  the network is able to learn 5-bit parit y problem.
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Figure  S: The figure shows the learning ctipability  of CF.}’  for 6-bit
parity problem. x axis represents number of hidden units used (limited
to 20), and y axis is percentage. As shown, even with 3-bit limited
weight quant ization  the network is able to lcar n 6-bit parity problcm.
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Figure 6: ‘1’hc figure shows the learning capability of CEP for 7-bit
parity problcm. x axis represents number of hidden units used (limited
to 20), and y axis is percentage error. As shown, even with 3-bil limited
weight quantization  the network is able to leal n 7-bit parity problcm.
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Figure 7: The figure shows the learning capability of CEf’ for 8-bit
parity problcm. x axis represents number of hidden units used (limited
to 20), and y axis is percentage. As shown, with 3-bit limited weight
quantizalion  the nc[work is unab]c  to lc:irn  8-bit parity  p rob lem
perfectly, but the network is able to learn with 4-bit weight quantization
perfectly.

VI. Discussion

As our mathematical analysis suggested, the weight set wih can be calculated

deterministically  by using the pseudo-inverse technique. However, instead of

using the pseudo-inverse technique, perception learning is applied to obtain the

following advantages and disadvantage:

+ A better weight solution set. ‘1’he  network solves the problem directly in non-

linear space with non-linear measurements (input/output data set). In this

approach, the problem is solved in a higher order space, instead of in linear

space (first orcler) as used in the pseudo-inverse method.

+ A simpler hardware implementation required. With lhe perception learning

method the analog or digital approach can be easily dorm It has a less stringent
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hardware requirement as compared to that

because perception learning technique is

compare with the pseudo-inverse technique.

of the pseudo-inverse technique

fommlated less complicated to

- Convergence problem.

uncertainty in convergence

But the perception learning method faces more

than the pseudo-inverse technique. This is a trade-

off between the non-linear and linear approach,

1) From the analysis point of view, there are many ways to obtain the weight set

Wlh between the error surface and the output of a new hidden unit by using

maximum correlation, covariant,  conjugate gradient, and Newton’s second

order methods. One can investigate the most suitable technique for a particular

application, as well as the resources available.

2) From Equation (2), we can prove that the neuron transfer function can be

itnproved  by using the non-monotonic function to expand the solution space.

Or, to obtain a simpler mathematical model, a linear transformation can be

used to eliminate the derivative of the output transfer function.

In the analysis of

assumption is very

limited weight precision, the F,iven  assumption is &<Wih. This

abstract, but it can vary, based on measured data distribution,

Therefore, there is no determination of iii, but it is rather a relative perception of & To

obtain 8 in this paper, simulation is used.

VII. Conclusions

In this paper, we have shown that CEP is feasible for both a software- and a hardware-

based learning algorithm. From this analysis, the way CC works can be understood in
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depth. Moreover, the theoretical analysis provides us with the general framework of the

learning architecture, and the particular learning algorithm can be independently studied

for its suitability in a given application associated with some constraint for each problem.

(For example, in the hardware approach CEP is most advantageous, and for software,

Covariant or Newton’s second order method is mom advantages). For the CEP learning

algorithm, the advantages can be summarized as follows:

. A fast and reliable learning technique

● An easy implementation in hardware

● A low weight resolution requirement in weight space

A robust model in learning neural networks

Future Research

Future research will be :(a) confirm each learning methods in simulation, (b) address the

more practical problems to test the learning capability techniques as well as the hardware

implementation requirements. We will study the signal-to-noise ratio (SNR), not only in

the synapse, but for the entire network. Finally, we will propose a methodology of

hardware implementation.
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Appendix  A:

The energy function of the network can be defined  as

Assume that the network currently has n hidden units, and the energy no longer improves

with any search techniques (gradient descent search, or exhausted search, etc.). The new

hidden unit is now added to the network. The expected result is

E(n + 1) < E(n)

This is equivalent to
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Expanding and rearranging, we have

(i)

Assume that w~Of~(n + 1) is small so that

f{net~ + whOf~ (n + 1)} = f(netf) + f’(netf)w,Of~ (n + 1) (ii)

From (i) and (ii), it can be shown that

or

Armendix  II;

From equation (8), it is rewritten:

or

a) if
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then

f’, (~i)vh (Ci)

S 2 $jf’~ (ci)[{f~-l(Q,  )12 ‘{.fi’(9j)  -.fh_1(9i)}21
j=l

but

vie{l... P], {~*-1(~i))2  ‘{fh-l(~i)-fh-](~;)}2  20

Hence,

b)

Let

and

(iii)

S>()

If the assumption (iii) is no longer true, then vector r can be redefined as follows:

Id ~,m = max {~’

‘Y mu
=  f  -’@flmJ

r =

f-’(q  )f( ‘)7 “m
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
f(f;%J)

i={l...P}

and
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with

($, =:: : ::;:

y; is a component ?’ of F,-* (r+) which is a pseudo-inverse solution of F,-’ (r)

Obviously,

vi E{l,... P], ‘y, E[-’yn,m,yn,m]

and

vie{l,... P), y: E[-y lnaa  ~’Y r,,ax 1

~i and $; is expanding around zero and can be obtained as follows:

From equation (8), it can be reduced



—

Since magnitudes of (yi )3 and (’y; )3 are very small to compare with the magnitude of

‘yi and y: respective] y, and F-l (r’) and {F’1 (r) – F‘1 (I’* ) } are orthogonal vectors

[Kohonen

Since the

proof.

1989]. S can be simplified as below:

P

s ‘~’Yf ‘(’Yi  “YJ)’ ‘jj(’YJ)2
i=l i=l

approximation is used to simplify S, the sign of S is only interested for this
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